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Abstract We estimate locations of the regions of the percolation and of the non-percolation
in the plane (λ,β): the Poisson rate–the inverse temperature, for interacting particle systems
in finite dimension Euclidean spaces. Our results about the percolation and about the non-
percolation are obtained under different assumptions. The intersection of two groups of the
assumptions reduces the results to two dimension Euclidean space, R

2, and to a potential
function of the interactions having a hard core.

The technics for the percolation proof is based on a contour method which is applied to
a discretization of the Euclidean space. The technics for the non-percolation proof is based
on the coupling of the Gibbs field with a branching process.

Keywords Non-ideal gas · Poisson point process · Boolean percolation

1 Introduction

A rigorous proof of phase transitions for continuous models of the statistical mechanics is
still an open problem if the interactions between particles are described by conventional in
physics potential functions. The first and yet to this moment the only example of the rigorous
proof of the phase transition in a continuous model is the result by J.L. Lebowitz, A. Mazel
and E. Presutti in [3]. The potential functions in [3] are a pre-limiting version of the mean-
field interaction, see [2], having a large but finite radius of the interactions and a four-body
stabilizing potential function.

In the present work, we investigate the percolation properties of an interacting particle en-
semble. We describe a phase diagram of the continuous system in the plane (λ,β), the Pois-
son rate–the inverse temperature. The interaction is defined by pair potential functions. We
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do not prove the phase transition driven by boundary conditions as in [3]. However we think
that the transition: the percolation–the non-percolation can be considered as a phase tran-
sition relatively, for example, to the conductivity of the matter or the velocity of the sound
propagations.

The book [5] gives a rather complete picture of the state of the continuum percolation
theory for the ideal gas from the mathematical point of view. Much attention in [5] is drawn
to the Boolean percolation problem for the Poisson point processes in R

ν . Points of a con-
figuration of the process are considered as the centers of closed balls of a random radius
(Boolean radius) such that the radii corresponding to different points are independent of
each other (and also independent of the process) and identically distributed. The existence
of an unbounded connected component in the set composed by the union of all random balls
means the percolation. The unbounded component is called an infinite cluster. One of the
main results in [5] which is related to the present article is about the existence of a critical
value λc of the rate of the Poisson point processes. Namely, the value λc distinguishes the
percolation and the non-percolation, where the last means that with the probability 1 only
bounded connected components exist in the union of the balls. It is asserted in [5] that with
the probability 1 there are no infinite clusters when λ < λc and there exists an infinite cluster
when λ > λc .

We consider the same problem but for a non-ideal gas, which is determined by some in-
teraction potential function and the Poisson free measure with the rate λ. A non-percolation
condition was studied in the work [10] for positive finite range potential functions. The
Boolean radius is equal to the range of the interaction. A new proof of this result can be
found in [11].

Next we give a brief description of our results not concerning the conditions. We study the
case when the potential function takes as positive as negative values. The potential function
determines a Gibbs measure of which the percolation properties we investigate. In this case
a new parameter enters into the game it is temperature T . By a tradition we use the inverse
temperature β = 1

T
. The results we present here outline two regions in the plane (λ,β) of

the percolation and the non-percolation with probability 1 for a Boolean radius �. We do not
seek the solution as precise as possible. Our aim is to outline the regions such that they have
typical forms. Namely (see Fig. 1):

The region of the non-percolation can be described as follows.

There exists a density value λ−
� such that for any λ < λ−

� there exists an inverse temper-
ature β−

� (λ) such that for any β < β−
� (λ) all clusters are finite with Gibbs probability 1.

The region of the percolation can be described as follows.

For any density λ there exists an inverse temperature β+
� (λ) such that for all β > β+

� (λ)

there exists an infinite cluster with Gibbs probability 1. There exists a density value λ+
� such

that β+
� (λ) = 0 if λ > λ+

� .

Our results provide estimates of the parameter regions separating the areas of the exis-
tence A+ and of the non-existence A− of an infinite cluster. There exists a region between
A+ and A− where our result does not give the answer on the percolation.

The result shows in particular that for any small density λ there exists an infinite cluster
if temperature is low enough. Another feature is also that the non-existence of an infinite
cluster may only be at a small density, λ < λ−

� . This fact is in accord with the result [5] of
the Boolean non-percolation for the ideal gas.

The conditions under which we prove the percolation and the non-percolation are dif-
ferent. We prove the percolation result in R

2 only. It is necessary as well, that the potential
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function has an attractive part. However, we do not assume a hard core. Our proof of the non-
percolation requires the hard-core condition. The attractive part of the potential as well as the
dimension of the Euclidean space are not restrictions for our proof of the non-percolation.
Besides, all results are proved for a non-random Boolean radius �.

The technics for the proofs of the existence and of the non-existence of an infinite clus-
ter drastically differ. For the existence of an infinite cluster we use technics close to the
contour methods (see [1]). The non-existence is proved by a coupling of the Gibbs state
and a branching process. The extinction of the branching process leads to the non-existence
of infinite clusters. We use a branching process with interactions between offsprings in the
same generations and between the generations. The hard core condition prevents the accu-
mulations of a large offspring amount which can appear because of attractive interactions
between the offsprings.

Section 2 contains the definitions, all assumptions and the formulations of the main re-
sults. All proofs are in Sect. 3.

2 Model and Results

The Configuration Space, the Potential Function and Hamiltonian

The non-ideal gas model is a pair (�,ϕ). Here � = {ω} is the set of all countable subsets in
R

ν such that for any bounded V ⊂ R
ν

#(ω ∩ V ) < ∞, (2.1)

where #(W) is the number of points in W . ω is the set of points from R
ν , where particles

x ∈ ω sit. The set � is called the set of configurations. We use the standard notations for the
restrictions on subsets. If V is a Borel set in R

ν and ω ∈ � then ωV = ω ∩ V and �V is the
set of all configurations in V . If V ∩ V ′ = ∅ and ω ∈ � then ωV ∪V ′ =: ωV ∨ ωV ′ .

The σ -algebra A in � is generated by the cylinder sets

AV,n := {ω : #(ωV ) = n} ⊆ �, (2.2)

where V is a bounded Borel set in R
ν .

The potential function ϕ describes the interaction of the particles. We consider pair in-
teractions only and assume that ϕ(x, y) is continuous and satisfies the following properties.

• Translation invariance: for any (x, y) ∈ R
ν × R

ν and any z ∈ R
ν it holds that ϕ(x + z,

y + z) = ϕ(x, y).

Therefore we can introduce the function ϕ̂(x), x∈ R
ν , by the equality ϕ̂(x−y) = ϕ(x, y),

which further we denote with the same symbol ϕ(x).
• Isotropy: if B is an orthogonal operator in R

ν then ϕ(Bx) = ϕ(x).
• There are two reals f ≥ 0, d > 0 such that f ≤ d and

ϕ(x)

⎧

⎪

⎨

⎪

⎩

= ∞, if |x| ≤ f,

≥ 0, if |x| ∈ [f,d],
≤ 0, if |x| ∈ [d,∞).

(2.3)

Besides there exists a positive monotone decreasing function ψ and g > d such that

ϕ(x) ≥ −ψ(x) for x ≥ g, (2.4)
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and

I =
∫ ∞

g

rν−1ψ(r)dr < ∞. (2.5)

The condition (2.5) was proposed in [12].
• Lower boundedness: there exists M > 0 and x0 such that minx ϕ(x) = ϕ(x0) = −M .

Hamiltonian is

H(ω) =
∑

x,y∈ω

ϕ(x − y) (2.6)

which describes energy of configuration ω. The above expression is formal since the sum
does not exists. The energy of ωV ∈ �V with boundary condition τ ∈ �V c is

H(ωV | τ) = H(ωV ) + F(ωV , τ ) :=
∑

x,y∈ωV

ϕ(x − y) +
∑

x∈ωV ,y∈τ

ϕ(x − y). (2.7)

The last sum in the above expression might be infinite. However, if f > 0 and (2.5) holds
then

∑

x∈ωV ,y∈τ ϕ(x − y) < ∞ for any finite V , and any ωV and τ .

The Reference and the Gibbs Measures

The reference measure � is defined as Poisson one on (�,A) with intensity λ > 0:

�(AV,n) = λn|V |n
n! e−λ|V |, (2.8)

where |V | is the volume of V (see (2.2)). The Gibbs measure P β,λ on (�,A) is determined
by the Gibbs reconstruction method of the reference measure (see [4]).

To define P β,λ we introduce a Gibbs specification

{P β,λ

V,τ , V ⊂ R
ν, τ ∈ �V c }

which is a family of the Gibbs reconstruction of the measure � in finite volumes V given a
conditional configuration τ and the inverse temperature β ∈ R+. The measure P

β,λ

V,τ has the

following density p
β,λ

V,τ with respect to the measure �:

p
β,λ

V,τ (ωV ) = exp{−βH(ωV | τ)}
∫

�V
exp{−βH(ω | τ)}�(dωV )

. (2.9)

It is assumed that the densities p
β,λ

V,τ (ωV ) are defined for boundary configurations τ such that
(2.7) is finite.

We assume some conditions for the existence of the integral in (2.9) and for the existence
of at least one of Gibbs measures P β,λ corresponding to the specification (2.9) (see [7]
or [6]). If H(·|τ) is finite not for all τ then the existence conditions is such that the Gibbs
measure P β,λ is concentrated on a set of the configurations, where H(·|τ) is finite, when τ

from this set (see [9]).
Further we use the notation HV (·|·) for the energy of configurations from �V with a

boundary condition. We shall often omit some indices and shall write PV instead of P
β,λ

V,τ

and P instead of P β,λ.
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The Percolation

Any sequence (xk), finite or infinite, of particles from a gas configuration ω is called a
path. A path π = {x1, x2, . . . , xn} ⊂ ω �-percolates if |xi − xi−1| ≤ � for all i = 2, . . . , n.
A configuration ω, may be finite, is a cluster if any pair x, y ∈ ω of the particles can be
included in a path {x, x1, . . . , xn, y} which �-percolates.

A point x ∈ R
ν is �-close to a configuration ω if dist(x,ω) ≤ �. Two points x, y ∈ R

ν

�-percolate with respect to a cluster ω if they are close to ω. We shall denote by (x �� y),
where x, y ∈ R

ν , the event that x and y percolate. A point x ∈ R
ν �-percolates to infinity if

there exists an infinity cluster close to x. We denote this event by (x �� ∞). The probability
of the event (0 �� ∞) we call �-percolation function or percolation function and denote
θ�(β,λ):

θ�(β,λ) := P β,λ(0 �� ∞). (2.10)

The Main Result on the Non-percolation

The result on the non-percolation is proved for f > 0 (the hard-core condition) and any ν

(any dimension of the Euclidean space).

Theorem 2.1 For any � > f there exists λ−
� , 0 < λ−

� < ∞, and a function β−
� (λ) defined

on the interval (0, λ−
� ) such that

1. 0 < β−
� (λ) < ∞ on the interval (0, λ−

� ),
2. β−

� (λ) ↑ ∞ as λ ↓ 0.

Let

A− = {(λ,β) : λ < λ−
� , β < β−

� (λ)}.
Then all clusters are finite with the probability 1 if (λ,β) ∈ A−, that is θ�(β,λ) = 0 for those
(λ,β) (see Fig. 1). Moreover the expectation of the cluster size is finite.

The Main Result on the Percolation

The next theorem is proved for the case ν = 2. Now the Boolean radius is bounded below,
however the hard core is not necessary.

Theorem 2.2 For any � > 2
√

2d there exist λ+
� , 0 < λ+

� < ∞, and a function β+
� (λ) defined

on the interval (0, λ+
� ) such that

1. 0 < β+
� (λ) < ∞ on the interval (0, λ+

� ),
2. β+

� (λ) ↑ ∞ as λ ↓ 0.

Let

A+ = {(λ,β) : λ < λ+
� , β > β+

� (λ)} ∪ {(λ,β) : λ > λ+
� , β ≥ 0}.

Then with the probability 1 there exists an infinite cluster if (λ,β) ∈ A+, that is θ�(β,λ) > 0
for those (λ,β) (see Fig. 1).

The next corollary joins the results of Theorems 2.1 and 2.2. However, the claims of the
corollary hold under the most restrictive assumptions from the assumptions of both theo-
rems.
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Fig. 1 Percolation and
non-percolation regions

Corollary 2.3 Let ν = 2 and f > 0. For all � > 2
√

2d there exist two positive reals λ−
� and

λ+
� , and two functions: β−

� (λ) defined on (0, λ−
� ), and β+

� (λ) defined on (0, λ+
� ), such that

1. 0 < λ−
� < λ+

� < ∞,
2. 0 < β−

� (λ) < ∞ and 0 < β+
� (λ) < ∞ on their intervals of the definitions,

3. β−
� (λ) < β+

� (λ) on (0, λ−
� ),

4. β−
� (λ) ↑ ∞ and β+

� (λ) ↑ ∞ as λ ↓ 0.

Let

A− = {(λ,β) : λ < λ−
� , β < β−

� (λ)}
and

A+ = {(λ,β) : λ < λ+
� , β > β+

� (λ)} ∪ {(λ,β) : λ > λ+
� , β ≥ 0}.

Then

1. with the probability 1 all clusters are finite if (λ,β) ∈ A−,
2. with the probability 1 there exists an infinite cluster if (λ,β) ∈ A+

(see Fig. 1).
Moreover the expectation of the cluster size is finite if (λ,β) ∈ A−.

3 Proofs

3.1 The Proof of the Non-percolation

It is essential for the proof that the potential function has the hard core. However, the argu-
ments in this subsection do not depend on the dimension of the space.

The next lemma is an obvious consequence of the hard core condition and the inequality
(2.5).

Lemma 3.1 Let V ⊆ R
ν be a finite volume and let σ be a configuration in V . Then

∫

V c

e−H(σ∨ω)�(dω) < ∞. (3.1)
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We obtain the non-percolation result by a coupling of the Gibbs measure P β,λ with a
branching cluster process. The method was described in the work [8]. Here we use the
analogous idea.

Note that due to the hard core condition, one considers the �-percolation only when
� > f. Informally the idea of the proof is the following. Suppose that R ⊂ ω is a �-cluster
with #(R) > 1. Let us choose some particle x0 from this cluster, x0 ∈ R. Let R(1) ⊂ R be the
set of all particles from R such that the distance between x0 and any point from R(1) is less
than or equal to �. The set R(1) is not empty because #(R) > 1. Next we choose a set R(2),

where R(2) ⊂ R \ (R(1) ∪ {x0}), and which is the set of the particles such that for any v from
R(2) there exists at least one point w from R(1) at the distance no greater than �. We can call
v an offspring of w. If the set R \ (R(2) ∪ R(1) ∪ {x0}) is not empty we can choose a subset
R(3) with the similar properties, etc. Iterating the procedure we will obtain the following
representation of the cluster R : R = ⋃∞

i=0 R(i) (here R(0) = {x0}). The set R(i) we call i-th
generation. The set R(n−1) generates the set R(n).

This branching construction brings us the idea of a branching process, but there are two
peculiarities that differ our process from the ordinary branching process. First, note that it is
possible for one offspring to have different parents. Thus we do not have here a branching
tree and it means that the independence of the offsprings does not hold. Second, keeping in
mind the coupling, we define the transition probabilities of the branching process by Gibbs
measure PV . Thus for � sufficiently small it is possible that some generation R(n) interacts
with precedent generations R(k), k < n.

Next we describe a rigorous construction of the cluster branching process.

3.1.1 The Cluster Branching Process

We describe a path of the process and its distribution P.
Let x0 be some point from R

ν . We shall construct a sequence (R(n)) which describes
the generations. Together with the sequence (R(n)) we define the sequence (En), where
En = ⋃n

i=0 R(i) and the sequence of the occupied areas Bn = ⋃

v∈En−1
B�(v). The set En we

call an environment.
Initial step. Let R(0) = {x0} and E0 = {x0}, B0 = ∅.

First step. Let R(1) = {x(1)

1 , . . . , x
(1)
k1

} be a set of the particles in the ball B�(x0) with the
center x0 and with the radius �. The set R(1) is the offspring set of x0. Then E1 = E0 ∪ R(1)

and B1 = B�(x0). B1 is the occupied area by the offsprings of x0. No particles of further
embranchments appear in B1. We define a conditional probability density ρ of the measure
P with respect to the same Poisson measure �. The density with respect to � of the offspring
set R(1) of the ancestor x0 is

ρ(x
(1)

1 , . . . , x
(1)
k1

| E0) = 1

Z(E0)

∫

�Bc
1

e−βH(E1∨ω)�(dω), (3.2)

where �Bc
1

is the set of all configurations where particles “live” outside of the ball B1, and

Z(E0) =
∫

�

e−βH(E0∨ω)�(dω).

We use Gibbs measure P β,λ for the definition of ρ. In fact, all defined probabilities and
further calculations assume a big volume V , where we consider all configurations. It means
that we use the measure PV instead P β,λ. For example, in (3.2) the integration is taken over
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�Bc
1∩V . Therefore ρ depends on V . However, in what follows all estimates do not depend on

V , and hence can be considered as the estimates in the infinite volume. We do not mention
the volume V in the further calculations except cases when it is required.

Using ρ we can calculate, for example, the probability to have k offsprings of x0:

P(#(R(1)) = k | E0) =
∫

{R(1)∈�B1 : #(R(1))=k}
ρ(R(1) | E0)�(dR(1))

= λk|B1|k
k! e−λ|B1|

∫

(B1)k
ρ(x

(1)

1 , . . . , x
(1)
k | E0)dx

(1)

1 . . .dx
(1)
k .

Second step. In this step we describe the embranchments of all particles from R(1). Any
particle branches according to some order introduced in R(1). We shall construct the set R(2)

in according to the chosen order. Let R(2,1) = {x(2,1)

1 , . . . , x
(2,1)
k2,1

} ⊂ B�(x
(1)

1 ) \B1 be the set of

offsprings of x
(1)

1 . The offsprings of x
(1)

1 cannot be situated in B1 since B1 is occupied by the
offsprings of x0. Let E(2,1) = E1 ∪ R(2,1) and B(2,1) = B1 ∪ B�(x

(1)

1 ). The probability density
of the offsprings of x

(1)

1 is

ρ(x
(2,1)

1 , . . . , x
(2,1)
k2,1

| E1) = 1

Z(E1)

∫

�(B(2,1))
c

e−βH(R(2,1)∨E1∨ω)�(dω), (3.3)

where

Z(E1) =
∫

�Bc
1

e−βH(E1∨ω)�(dω) (3.4)

(see (3.1)).
Suppose now that k < k1 particles from R(1) are already branched and R(2,1), . . . ,R(2,k) is

a sequence of their offsprings. Hence we have the environment (all already living particles)
E(2,k) = E1 ∪⋃k

i=1 R(2,i) and the occupied area B(2,k) = B1 ∪⋃k

i=1 B�(x
(1)
i ). Note that B(2,k)

is the �-neighborhood of E0 ∪ {x(1)

1 , . . . , x
(1)
k }.

Let now the next point x
(1)

k+1 be branching. Let

R(2,k+1) =
{

x
(2,k+1)

1 , . . . , x
(2,k+1)
k2,k+1

}

⊂ B�(x
(1)

k+1) \ B(2,k)

be the set of offsprings of x
(1)

k+1. Then E(2,k+1) = E(2,k) ∪ R(2,k+1) and B(2,k+1) = B(2,k) ∪
B�(x

(1)

k+1). The probability density of the offsprings is

ρ
(

x
(2,k+1)

1 , . . . , x
(2,k+1)
k2,k+1

| E(2,k)

)

= 1

Z(E(2,k))

∫

�(B(2,k+1))
c

e−βH(E(2,k+1)∨ω)�(dω). (3.5)

We obtain the next generation R(2) = ⋃k1
i=1 R(2,i) after the embranchments of all points

from R(1). Let E2 = E(2,k1) and B2 = B(2,k1).
(n + 1)-th step. To construct R(n+1) from R(n) we follow the same scheme. Let R(n) =

{x(n)

1 , . . . , x
(n)
kn

}. The particles from R(n) are branching according to some chosen order in
R(n). Suppose that k (k < kn) particles from R(n) are branched. Hence we have the sets
R(n+1,i) (where i ≤ k), E(n+1,k) and B(n+1,k).

Now, let

R(n+1,k+1) =
{

x
(n+1,k+1)

1 , . . . , x
(n+1,k+1)
kn+1,k+1

}

⊂ B�(x
(n)

k+1) \ B(n+1,k)
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be the set of offsprings of the branching particle x
(n)

k+1. Then E(n+1,k+1) = E(n+1,k)∪R(n+1,k+1)

and B(n+1,k+1) = B(n+1,k) ∪ B�(x
(n)

k+1). The probabilistic density is

ρ
(

x
(n+1,k+1)

1 , . . . , x
(n+1,k+1)
kn+1,k+1

| E(n+1,k)

)

= 1

Z(E(n+1,k))

∫

�(B(n+1,k+1))
c

e−βH(E(n+1,k+1)∨ω)�(dω). (3.6)

The above iterative steps describe a path and the transition probabilities of the cluster
growth process. Note that the offsprings can depend not only on the preceding generation,
but on all previous generations.

The question we are interested is when the cluster branching process extincts with the
probability 1. It is known that the extinction condition of the ordinary branching processes
is formulated in the term of the mean number of the offsprings. We can expect that the
extinction of the cluster branching process is controlled by the offspring mean value, as well.
We show further that if the mean number of the offsprings is uniformly less than 1 over
all possible cluster configurations of the previous generations, then the cluster branching
process will extinct with the probability 1.

In the next lemma we prove that there exists a region in the plane (λ,β) such that the
mean offspring number of one ancestor is less than 1. Then, we show that this condition
is sufficient for the extinction of the cluster branching process. Moreover we show that the
mean value of paths of the cluster branching process is finite.

Lemma 3.2 There exists λ−
� and a function β−(λ) such that for any λ < λ−

� and β < β−(λ)

the expected number of the offsprings #(R(n,k)) of the ancestor x
(n−1)
k is less than 1, uniformly

over n, k and over the environment E(n,k−1).

sup
n,k

E
(

#(R(n,k))
∣

∣E(n,k−1)

)

< 1. (3.7)

Proof We give an estimate of the probability of the point x
(n−1)
k to have exactly K offsprings,

that is #(Rn,k) = K . By the definition of the offspring density (3.6) we have to estimate the
following integral. Let ˜B(x

(n−1)
k ) := B�(x

(n−1)
k ) \ B(n,k−1) then

P
(

#(R(n,k)) = K
∣

∣ E(n,k−1)

)

=
∫

{R(n,k)∈�
˜B(x

(n−1)
k

)
:#(R(n,k))=K}

ρ(R(n,k) | E(n,k−1))�(dR(n,k)). (3.8)

We shorten some notations in the further calculations. Let ˜R := R(n,k) and ˜E := E(n,k−1).
Than the integral (3.8) can be represented as

P(#(R(n,k)) = K | E(n,k−1))

= P(#(˜R) = K | ˜E)

= 1

Z(˜E)

∫

{˜R∈�
˜B(x

(n−1)
k

)
:#(˜R)=K}

∫

�Bc
(n,k)

e−βH(˜R∨˜E∨ω)�(dω)�(d˜R), (3.9)
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where

Z(˜E) =
∫

�Bc
(n,k)

e−βH(˜E∨ω)�(dω). (3.10)

Hamiltonian in (3.9) can be represented as

H(˜R ∨ ˜E ∨ ω) = H(˜R) + H(˜E ∨ ω) + F(˜R, ˜E ∨ ω). (3.11)

Let Cm be a sequence of the strips

Cm = {x ∈ R
ν : m ≤ |x − x

(n−1)
k | < m + 1},

where m ∈ Z+ and m ≥ g, and

C0 = {x ∈ R
ν : � ≤ |x − x

(n−1)
k | < m0},

where m0 = min{m : m ≥ g}. The volume of Cm is

|Cm| = κPν−1(m),

where Pν−1(r) is a polynomial having its power ν − 1, and the leading coefficient is ν − 1.
Let �m = �Cm\B(n,k)

. Let ω ∈ �m then the number of the particles of the configuration ω∨ ˜E

in Cm has the following bound

#
(

(ω ∨ ˜E)Cm

) ≤
[

|Cm|
κ(

f

2 )ν

]

≤ Pν−1(m)

(
f

2 )ν
,

where (ω ∨ ˜E)Cm is the restriction of ω ∨ ˜E to Cm. We have then the following lower bound
for the interaction energy of (ω ∨ ˜E)Cm and ˜R consisting K offsprings, #(˜R) = K ,

F
(

(ω ∨ ˜E)Cm, ˜R
) ≥ −ψ(m)K

2νPν−1(m)

f ν
.

The energy of the interaction of ω ∨ ˜E and ˜R is estimated as

F
(

ω ∨ ˜E, ˜R
) ≥ −KMn0 − 2νK

f ν

∞
∑

m=m0

Pν−1(m)ψ(m)

≥ −KMn0 − 2νK

f ν

∫ ∞

m0

Pν−1(r)ψ(r)dr

≥ −K

(

Mn0 + 2ν

f ν
I

)

,

where n0 = [ |C0|
κ(

f
2 )ν

] (see (2.5)). Let n1 = Mn0 + 2ν

f ν I .

Now by (3.9) and (3.11) we have

P(˜R : #(˜R) = K | ˜E)

≤ eβKn1

Z(˜E)

∫

{˜R∈�
˜B(x

(n−1)
k

)
:#(˜R)=K}

e−βH(˜R)�(d˜R)

∫

�Bc
(n,k)

e−βH(˜E∨ω)�(dω).
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The energy H(˜R) we can estimate very roughly as

−H(˜R) < M

(

K

2

)

< MK2. (3.12)

Thus

P(˜R : #(˜R) = K | ˜E)

≤ eβ(Kn1+MK2)

Z(˜E)

∫

{˜R∈�
˜B(x

(n−1)
k

)
:#(˜R)=K}

�(d˜R)

∫

�Bc
(n,k)

e−βH(˜E∨ω)�(dω)

≤ eβ(Kn1+MK2)

Z(˜E)

(λ|˜B(x
(n−1)
k )|)K

K! e−λ|˜B(x
(n−1)
k

)|
∫

�Bc
(n,k)

e−βH(˜E∨ω)�(dω)

≤ eβ(Kn1+MK2) (λ|B�(x
(n−1)
k )|)K

K! . (3.13)

In the last inequality we use

1

Z(˜E)

∫

�Bc
(n,k)

e−βH(˜E∨ω)�(dω) = 1.

Besides in the last inequality in (3.13) we estimate the volume |˜B(x
(n−1)
k )| by |B�(x

(n−1)
k )|.

Note that ˜B(x
(n−1)
k ) can be empty, that means that the particle x

(n−1)
k has no offsprings. It

leads to zero of the probability we are estimating. We do not use this possibility.
The right hand side of (3.13) does not depend on the volume V .
The maximal number of the particles in the ball B�(x

(n−1)
k ) is nB = |B�(x

(n−1)
k )|

/(κ(f/2)ν). Thus using estimation (3.13) we can estimate the mean number of the off-
springs:

E
(

#(˜R)
∣

∣ ˜E
) ≤

nB
∑

k=0

keβkn1+βk2M (λ|B�(x
(n−1)
k )|)k

k!

≤ λκ�νeβnBn1+βn2
B

Meλκ�ν

. (3.14)

Let

β−
� (λ) = − 1

A
lnλ − κ�ν

A
λ − ln

(

κ�ν

A

)

, (3.15)

where

A = nB(MnB + n1).

The function β−(λ) is considered on the interval (0, λ−
� ], where λ−

� is a root of the equation

− lnλ − κ�νλ − ln(κ�ν) = 0. (3.16)

When λ < λ−
� and β < β−(λ) we obtain

E
(

#(˜R)
∣

∣ ˜E
)

< 1 (3.17)

uniformly over the environment ˜E. �
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Next we show that if the mean number of the offsprings is less than 1 (see (3.17)) then
the mean size of the cluster is finite. Indeed, if β < β−(λ), then there exists ε > 0 depending
on β and λ such that E(#(˜R) | ˜E) < 1 − ε, and

E(#(R(n))) = E

( ∞
∑

k=1

I{#(R(n−1))=k}#(R(n))

)

=
∞

∑

k=1

k
∑

i=1

E
(

I{#(R(n−1))=k}#(R(n,i))
)

=
∞

∑

k=1

k
∑

i=1

E
(

I{#(R(n−1))=k}E
(

#(R(n,i))
∣

∣E(n,i−1)

)

)

≤ (1 − ε)

∞
∑

k=1

k
∑

i=1

E(I{#(R(n−1))=k}) = (1 − ε)E(#(R(n−1))).

It means that

E(#(R(n))) < (1 − ε)n,

and we see that the mean cluster size is finite,

E

( ∞
∑

n=1

#(R(n))

)

=
∞

∑

n=1

E(#(R(n))) ≤ 1/ε. (3.18)

Since the path R(n) is a �-connected set of points in V and the estimate (3.18) does not
depend on V , the probability of infinite clusters is 0.

This proves that the cluster branching process is degenerated.
Any path of the cluster branching process starting from x0 is

E =
N
⋃

n=1

R(n),

where N which is random is the number of the generations. N is finite since (3.18). The
relation (3.18) can be rewritten as

E(#(E)) =
∑

k

k

∫

{E: #(E)=k}
ρ(E | E0)�(dE) < ∞. (3.19)

The Coupling

We explain next the coupling of the Gibbs field having the distribution P β,λ and the branch-
ing cluster process having the distribution P. To this end we represent any finite �-cluster of
a configuration ω as a path of the branching cluster process.

Let γ ⊂ ω0 ∈ � be a finite �-cluster in a configuration ω0. It means that B�/2(γ ) =
⋃

x∈γ B�/2(x) is connected component in B�/2(ω0) = ⋃

x∈ω0
B�/2(x).

Choose a particle x0 ∈ γ . We can consider the configuration γ as a branching process
path E = (En), En ⊆ En+1, starting at the particle x0 (E0 = {x0}), and such that γ = ⋃

En.
The construction was described in Sect. 3.1.1. By the described iteration we obtain also a
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sequence of generations (R(n)) such that γ = ⋃

n R(n). Any generation R(n) is a set of the
offsprings of R(n−1).

Next we find a relation between the distribution of the cluster branching process and the
Gibbs measure. Consider the event

�γ = {ω : γ ⊂ ω, B�(γ ) ∩ γ = γ }.

We can define a density χ of this event with the respect to �.

χ(�γ ) = 1

ZV

∫

�(B�(γ ))c

e−βH(γ∨ω)�(dω). (3.20)

The density ρ(γ ) of the path γ is

ρ(γ | E0) =
N

∏

n=1

ρ(R(n) | En−1). (3.21)

It follows from finiteness of γ that N is finite.
It is not difficult to verify that

ρ(γ | E0) = Z(EN)

Z(E0)
. (3.22)

Then

χ(�γ ) = ρ(γ | E0)
Z(E0)

ZV

. (3.23)

Let (Vm) and (˜Vm) be sequences of the boxes

Vm = {x ∈ R
ν : |x| ≤ m}, ˜Vm = {x ∈ R

ν : |x| ≤ m − �}.

Define the sequence (γm) where γm = γ ∩ ˜Vm. For any γm we have the relation (3.23).
Finiteness of the expectation of the �-clusters follows from (3.23). Let

�k
x0

= {γ ⊂ R
ν : #(γ ) = k, x0 ∈ γ }

be the set of all �-clusters containing the particle x0 and having exactly k particles.
Consider the set of the configurations

�
�k

x0 =
⋃

γ∈�k
x0

�γ

and its Gibbs probability

PV

(

�
�k

x0
) = 1

ZV

∫

�
�k
x0

e−βH(ω)�(dω)

= 1

ZV

∫

�k
x0

∫

�(B�(γ ))c

e−βH(ω∨γ )�(dω)�(d(γ ∨ φB�(γ ))),
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where φB�(γ ) is the empty configuration in the �-neighborhood of γ . Hence

PV

(

�
�k

x0
) =

∫

�k
x0

ρ(γ | x0)�(d(γ ∨ φB�(γ ))).

The mean value of the size of the clusters γ then is

EV (#(γ )) =
∞

∑

k=1

kPV

(

�
�k

x0
)

=
∞

∑

k=1

k

∫

�k
x0

ρ(γ | x0)�(d(γ ∨ φB�(γ ))) < ∞

since (3.19). This proves Theorem 2.1.

3.2 The Proof of the Percolation

The proof of the existence of infinite clusters is based on a technic which is close to the
contour method in the lattice models. To apply the method we discretize R

2 splitting it into
squares. A c-contour around 0 is a set of empty (without particles) squares surrounding 0.
The main fact we prove is that the probability of a c-contour decreases exponentially with
its length. It leads to the finiteness of the number of the contours surrounding 0.

In our proof of the percolation, the essential assumption is that the space is two-
dimension. The hard core is not used.

Divide R
2 into square cells S = {Sq

(k,l)} of the linear size equal to q. Suppose that the
left-lower corner of any cell S

q

(k,l) has coordinate (kq, lq), where (k, l) ∈ Z
2. So we have

a natural order of the cells. The point c(k,l) = ( 2k+1
2 q, 2l+1

2 q) is called the center of the cell
S

q

(k,l). Two cells S
q

(k,l) and S
q

(k′,l′) are neighbors if either k = k′ ± 1 and l = l′ or l = l′ ± 1
and k = k′. Let 〈c, c′〉 be the line connecting the centers c = c(k,l) and c′ = c(k′,l′) if Sr

(k,l) and
S

q

(k′,l′) are neighbors. Let P = {Sq

(k,l)} ⊆ S be a finite subset of the cells and C(P) = {c(k,l) :
S

q

(k′,l′) ∈ P} be the set of all centers of the cells from P . For every set P of the cells we
consider the graph

GP =
(

C(P),�(P) = {〈c, c′〉 : c, c′ ∈ C(P)}
)

having C(P) as the vertex set and �(P) as the bond set of all bonds connecting neighboring
cells from P . A set of cells P is connected if the graph GP is connected.

A set of cells R is called contour if the bond set �(R) is homeomorphic to the circle.
The number n(R) of the cells in a contour R is called the length of the contour.

If P is a set of cells then W(P) = ⋃

S∈P S ⊆ R
2 is the support of P .

All contours we consider further surround 0 ∈ R
2. Therefore we often omit mentioning

this. Let ω ∈ � be a configuration. If a contour R is such that ω ∩ W(R) = ∅ then we call it
a c-contour with the respect to ω or simply a c-contour.

The proof of Theorem 2.2 is based on the following lemma. Let �0(R) be the event
(the set of configurations) such that the contour R is the c-contour with respect to any
ω ∈ �0(R), that is �0(R) = (ωW(R) = ∅). Let ˜� = �W(R)c be the set of all configurations
out of W(R). Then

�0(R) = {ω = φW(R) ∨ ω̃ : ω̃ ∈ ˜�},
where φW(R) is the empty configuration in W(R).
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Lemma 3.3 Let the cell size be q = 2d + δ, where δ is a small positive number. There exist
constants α ∈ (0,1), c(β) > 0 and G(β,λ) such that for any h ≥ 0 there exists a function
β+

�,h(λ) ≥ 0 defining the domain

{(λ,β) : β > β+
�,h(λ)}

where the following relations hold:

1. G(β,λ) > h,
2. for any c-contour R

P β,λ(�0(R)) < c(β)e−n(R)αG(β,λ). (3.24)

The probability that there are no particles in set W(R) which is the support of the
c-contour R exponentially decreases with the contour length.

Proof Let V be a volume in R
2 containing W(R) = ⋃

S∈R S. In order to estimate the prob-
ability of event �0(R) (see Fig. 3A) we construct a event �1(R) by adding particles in the
c-contour R (see Fig. 3B). That allows to obtain the lower bound of probability PV (�1(R))

of the form PV (�1(R)) > enαG(β,λ)PV (�0(R)), where n = n(R). Substituting the probabil-
ity PV (�1(R)) by 1, we immediately obtain (3.24).

The Probability of �0(R)

Recall that �0(R) is the event composed of the configurations in V containing c-contour R.
We assume that the boundary configuration out of V is τ = ∅. The probability of the event
then is

PV (�0(R)) = 1

ZV

∫

�0(R)

exp{−βH(ω)}�(dω)

= e−λ�n

ZV

∫

˜�

exp{−βH(ω̃)}�(dω̃), (3.25)

where � = (2d +δ)2 is the volume of any cell, ˜� is the set of all configurations in V \W(R).
Let φW(R) be the empty configuration in the region W(R). Any configuration ω ∈ �0(R)

is the composition of φW(R) and a configuration ω̃ in V \ W(R), ω = φW(R) ∨ ω̃. The pre-
integral factor in (3.25) is the integration result over φW(R).

The Construction of the Event �1(R)

Let m be a positive number such that m < M. For such m there exist positive numbers a and
ε such that ε ≤ δ and

ϕ(x) ≤ −m for all |x| ∈ [a, a + ε]
(see Fig. 2).

Let γ = ⋃

〈c,c′〉∈�(R)〈c, c′〉 be the line in R
2 composed of the bonds 〈c, c′〉 ∈ �(R). The

length of γ is equal to (2d + δ)n(R). We introduce a direction on γ . Let it be counterclock-
wise. The points of any finite subset ˜D of γ we numerate along the direction of γ , that is
˜D = {x0, . . . , xk}. The point xi+1 ∈ ˜D is the first point which can be reached from xi in the
direction of γ .
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Fig. 2 The potential function

Fig. 3 The region of the positivity of the percolation function

Let Ba+ ε
2
(xi) be the closed disc of the radius a + ε

2 with its center at xi ∈ ˜D. If a + ε
2 <

4d + 2δ then Ba+ ε
2
(xi) ∩ γ is connected. In the case a + ε

2 ≥ 4d + 2δ the set Ba+ ε
2
(xi) ∩ γ

can be unconnected. Let C(xi) be a connected component of Ba+ ε
2
(xi) ∩ γ containing xi .

Now we consider ˜D only such that xi+1 ∈ C(xi) and |xi+1 − xi | = a + ε
2 for any i < k.

Every pair x, y ∈ ˜D such that |x − y| = a + ε
2 we call connected. The number η(˜D) of the
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connected pairs in ˜D takes one of two values

#(˜D) − 1 ≤ η(˜D) ≤ #(˜D).

The number #(˜D) of points in any ˜D is not greater than [ (2d+δ)n(R)

a+ ε
2

].
Let D = D(R) be such that #(D) = sup

˜D #(˜D).
An inverse estimate is in the next

Lemma 3.4 There exists α > 0 such that for any contour R the number

#(D(R)) ≥ αn(R) (3.26)

if n(R) > 2
√

2a
d

.

Proof We consider two different cases distinguished by the following inequalities

Case 1. a + ε
2 < 4d + 2δ,

Case 2. a + ε
2 ≥ 4d + 2δ.

The length s(xi, xi+1) of the piece of C(xi) ⊆ γ between xi and xi+1 can be estimated as
following

s(xi, xi+1) ≤
⎧

⎨

⎩

√
2(a + ε

2 ) in the case 1,

2(a + ε
2 )(

a+ ε
2

4d+2δ
+ 1) in the case 2.

Since

#(D) ≥ n(R)(a + ε
2 )

maxi s(xi, xi+1)

we can take

α ≥
⎧

⎨

⎩

1√
2

in the case 1,

2d+δ
a+ ε

2 +2d+δ
in the case 2. �

Let B ε
4
(x) be the disc of the radius ε

4 centered at x ∈ D and U = ⋃

x∈D B ε
4
(x). Every

disc B ε
4
(x) is called a bead and the set U is necklace. The set

�U = {σ ∈ �U : ∀x ∈ D, #(σ ∩ B ε
4
(x)) = 1, σ ∩ Uc = ∅}

is a set of configurations all particles of which are located in the beads only, one particle in
every bead.

The configuration set �1(R) contains configurations composed by the joint of three con-
figurations:

�1(R) = {ω1 = σ ∨ φW(R)\U ∨ ω̃ : σ ∈ �U, ω̃ ∈ ˜�} (3.27)

where φW(R)\U is the empty configuration in W(R) \ U and ω̃ ∈ ˜� are configurations in
W(R)c .
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The Lower Bound for P β,λ
(

�1(R)
)

The probability of �1(R) is

PV (�1(R)) = 1

ZV

∫

�1
e−βHV (σ)e−βHV (ω̃)e−βF(σ,ω̃)�(d(σ ∨ φW(R)\U ∨ ω̃)).

The energy F(σ, ω̃) of the interaction of σ and ω̃ is negative because the distance be-
tween any particles of ω̃ and of σ is greater than d, hence e−βF(σ,ω̃) is greater than 1. Since
φW(R)\U = ∅, then

PV (�1(R)) ≥ e−λn�eλ πε2
16 #(D)

ZV

∫

�U

e−βHV (σ)�(dσ)

∫

˜�

e−βHV (ω̃)�(dω̃). (3.28)

To estimate HV (σ) remark that there exist at least #(D) − 1 the connected pairs in D.
The interaction energy of any connected pair x, y ∈ D is estimated from below as

ϕ(x − y) ≤ −m.

Other pairs x, y ∈ D which are not connected, that is |x−y| �= a+ ε
2 , interact with a negative

energy.
Hence

∫

�U

e−βHV (σ)�(d(σ )) ≥ emβ(#(D)−1)

(

λπε2

16

)#(D)

e− λπε2
16 #(D)

and it follows from (3.28) that

PV (�1(R)) ≥ emβ(#(D)−1)

(

λπε2

16

)#(D)

PV (�0(R)).

Defining c(β) = eβm and

G(β,λ) = βm + lnλ + ln

(

πε2

16

)

(3.29)

we obtain

PV (�0(R)) ≤ exp{−#(D)G(β,λ)} exp{βm}
≤ c(β) exp{−n(R)αG(β,λ)}. (3.30)

The inequality (3.24) holds in the infinite volume since the right hand side of (3.30) does
not depend on V .

Taking

β+
�,h(λ) = − 1

m
ln(λ) − 1

m
ln

(

πε2

16

)

+ h

m

we complete the proof of Lemma 3.3. �

Next we define

β+
� (λ) = β+

�,
ln(c)

α

(λ), (3.31)
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where c is a combinatorial constant such that the number of the contours of the length n

surrounding 0 ∈ R
2 is not greater than cn. It is known that c ≤ 3. Let λ+

� be the solution of
the equation β+

� (λ) = 0. Define the set

A+ = {(β,λ) : λ ≤ λ0, β > β+
� (λ)} ∪ {(β,λ) : λ > λ+

� , β ≥ 0}.

Lemma 3.5 If (β,λ) ∈ A+ then with the probability 1 there exists only a finite number of
c-contours surrounding 0 ∈ R

2.

Proof Let �0(R) be the set of all configurations containing a c-contour R, the empty con-
tour which surrounds 0 ∈ R

2, and let �0
n = ⋃

R: n(R)=n �0(R). Then �0 = ⋃

n �0
n and

∑

n≥1

P β,λ(�0
n) ≤ exp{βm}

∑

n≥1

exp
{−n

(

αG(β(λ),λ) − ln(c)
)}

< ∞ (3.32)

if (β,λ) ∈ A+. It follows from (3.32) that

P β,λ

(

⋂

m

∞
⋃

n=m

�0
n

)

= 0. (3.33)

The inequality (3.33) means that with the probability 1 there exists a finite number of the
empty contours surrounding 0. �

Let ω be a configuration. The set Qω = ⋃

x∈ω B�/2(x) can be represented as the union of
�/2-neighborhoods of �-clusters which are connected components.

We define now a b-contour (Boolean contour). Assume that there exists a line L ⊆ Qc
ω

surrounding 0 ∈ R
2 such that KL ∩ ω = ∅, where

KL =
⋃

x∈L

B�(x).

The set KL is called a b-contour surrounding 0 or simply a b-contour.
The �/2 neighborhood of any �-cluster does not intersect L.

Lemma 3.6 Assume that R
2 is split into cells of the linear size q . For any b-contour K with

a radius r , r >
√

2q , there exists a c-contour R such that W(R) ⊆ K .

Proof The proof is based on the following simple observation: if we cast a coin of the
radius r on the plane R

2 divided into the square cells S , then there exists a cell which will
be covered entirely by the coin. Moreover if the center of the coin lies on a boundary of two
cells or four cells (one point) then all those cells are covered by the coin. �

We say that two b-contours are different if c-contours included into them are different.
Since the number of the c-contours is finite with the probability 1 then the number of dif-
ferent b-contours is finite as well. Therefore there exists an infinite component in Qω for
almost all ω.
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